

Photodiode Amplifiers

Changing Light to Electricity

Paul Rako

Strategic Applications Engineer Amplifier Group

Inside the Photodiode:

A cap and a current source:

The bigger the voltage across the diode the further the junction boundaries are pushed apart and the lower the capacitance.

Inside the Photodiode:

(And a really big resistor)

There is also a bulk resisistivity to the diode but it is usually very high (100 M Ω). This represents the "Dark Current".

8

Two ways to use the diode:

Photodiode Amplifier Types:

The Photovoltaic Mode:

No voltage across diode means no current though the big resistor ~

- No dark current.
- Also:
- Linear output
- Low Noise

Photodiode Amplifier Types:

Use Photovoltaic Mode:

• Where precision is more important then speed.

The lack of dark current removes an entire error term. The lower noise makes smaller measurements possible. The linear output makes calculations trivial.

The Photoconductive Mode:

Photodiode Amplifier Types:

Use Photoconductive Mode:

Where speed is more important then precision.

The voltage across the diode lowers it's capacitance. This allows faster amplifiers:

 Less capacitance allows a faster amplifier while maintaining stability.

Biasing the Photodiode:

 Apply a big voltage (that doesn't change): We want a low capacitance so put a big voltage across the diode. We want fast response so don't let the voltage ever change. How?

The Photodiode Amplifier: • Connect the diode to a virtual ground: Light -10 Volts As much reverse If this pin is at voltage as the diode ground so must this can stand. pin be at ground. 15

The Photodiode Amplifier:

The Photodiode Amplifier:

Amplifier Stability:

Amplifier Stability:

 Input pole (freq domain) or feedback lag (time domain) is bad.

Mechanical Analogy:

• A gear and rack mechanical servo.

This gear is the amp output stage.

You are the amplifier front-end trying to keep the pointers the same.

This gear is the feedback.

20

Mechanical Analogy:

 Input cap is like backlash in feedback mechanism.

Backlash here is a lag in the feedback.

The lag in your feedback pointer will cause you to oscillate the rack.

Input cap is like backlash in feedback mechanism.

Biasing the Amplifier: The output is stable but there is a big DC offset. Why? Light -10 Volts **Output never goes** below here even 25 with no light.

Biasing the Amplifier:

Biasing the Amplifier:

Amplifier Input Stage:

Input transistors have base current.

PNP Input Stage Input bias current may be 15 µA, but won't vary much over temperature.

NPN Input Stage

Amplifier Input Stage:

Input JFETs have large drift.

JFET Input Stage

Input bias current may be 15 pA, but will double every 10°C.

Amplifier Input Stage:

CMOS parts have ESD diodes.

MOSFET has no DC bias current but mis-match in ESD diodes causes bias current to flow in (or out) of pin.

Amplifier noise:

- Low current and low voltage noise in the same part is hard.
- JFET amplifiers have low current noise.
- Bipolar amplifiers have low voltage noise.
- Choppers can cause problems.

Some Potential Parts:

Device	Input Noise Voltage (nV/RtHz)	Input Noise Current (pA/RtHz)	Input Capacitance (pF)	l _{bias} (max)	GBWP (MHz)	GBWP/C _{in} (MHz/pF)
LMH6628	2	2	1.5	20μΑ	200	133
LMH6626*	1.0	1.8	0.9	20μΑ	500	556
LMH6624*	0.92	2.3	0.9	20μΑ	500	556
LMH6622	1.6	1.5	0.9	10μΑ	200	222
LMH6654 /6655	4.5	1.7	1.8	12µA	150	83
LMH6672	4.5	1.7	2	14µA	100	50
LF411A	25	0.01	4	200pA	4	1
LMV751	7	0.005	5	100pA	5	1
LMC662	22	0.0002	4	0.01pA (typical)	1.4	0.3
LMV771	8	0.001	4	100pA	4	1

36

Conclusions:

- Photodiode amplifiers are tricky.
- The design should be tailored for the application, DC, Data, etc.
- The design requires a lot of trial and error.
- Be prepared to do a lot of study.
- National Applications Engineering is here to help you.

- AN-1244: Photo-Diode Current-to-Voltage Converters.
- Amplifier WEBENCH®– On-line simulation of amplifier performance
- Photodiode Amplifiers: OP AMP Solutions by Jerald Graeme
- Photodetection and Measurement: Maximizing Performance in Optical Systems by Mark Johnson
- Photodetectors: Devices, Circuits and Applications by Silvano Donati

- If you have questions for our presenter, please send them to our customer response center at <u>new.feedback@nsc.com</u>.
- The online technical journal National Edge is available at

http://www.national.com/nationaledge/.

 Sign up for National's monthly newsletter, <u>News@National</u> by updating your online profile at <u>http://www.national.com/profile/user_info.cgi</u>

